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1. Introduction 
AncestryDNATM conducts several genetic analyses to help customers find, preserve, and 
share their family history.  
 
Here we explain how we detect “matches” from DNA—more precisely, how we identify 
long chromosome segments shared by pairs of individuals that are suggestive of recent 
common ancestry. In the field of genetics, this is called "identity-by-descent" (IBD).  
 
Once we identify IBD segments, we use this information to estimate how people are 
related to one another (e.g., first cousins). By drawing connections between relatives 
through their DNA, we offer the opportunity for AncestryDNA members to expand their 
documented pedigrees. Additionally, matching is an important building block for other 
AncestryDNA features such as DNA CirclesTM— groups of people who have all 
descended from the same common ancestor (see our DNA Circles White Paper). 
 
In this paper, we describe the steps we take to identify and interpret segments of DNA 
that are identical-by-descent between individuals. We begin with an introduction to the 
key concepts behind DNA matching, explain the challenges in identifying matches, and 
finally we describe how we tackle the problem of detecting IBD in large genetic 
database. 
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1.1. How DNA is inherited—a brief primer 

To illustrate the concept of inheritance from a common ancestor, consider the small 
family in Figure 1.1. Humans have 22 pairs of chromosomes in which one chromosome 
is inherited from the father and one from the mother (sex-linked chromosomes—X and 
Y—have a different inheritance pattern, and are not included in this example). In Figure 
1.1, each family member is represented by a pair of just one of the 22 pairs of 
chromosomes (the two colored bars), but the same concepts we illustrate apply equally 
to all 22 pairs of chromosomes. 
 
The chromosomes are shown in four colors—two shades of blue inherited from the 
father and two shades of red inherited from the mother.  
 
Observe that each child inherits an equal amount of DNA (50%) from the mother (red) 
and the father (blue), since the child inherits one copy of each chromosome from each 
parent. Also, observe that each of the child’s chromosomes is a mixture of each parent’s 
two chromosome copies. Each child has one light and dark blue mixture from the father 
and one light and dark red mixture from the mother. This mixture is different in each 
child. The biological process responsible for the transmission of chromosomes from 
parents to child in this way is what is called meiosis. The random assortment of these 
chromosome fragments during meiosis is called recombination. The end result is that 
each child’s DNA is a random mixture of DNA from his or her two parents. 
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Figure 1.1: Illustration of inheritance of DNA from parents to children. Each family member 
is represented by a pair of chromosomes inherited from their two parents. The chromosomes 
are colored to indicate DNA inherited from the same grandparent. The chromosomes of each 
child are a mixture of the chromosomes of his or her parents. 
 
Comparing the chromosomes of the siblings, lining them up from top to bottom (Figure 
1.1), we observe that some regions of the chromosomes have the same color in each 
sibling. This indicates that they have almost identical sequences of DNA at those 
locations on their chromosome. These locations on the chromosome are called 
“identical-by-descent” (IBD) because they were inherited from a common ancestor (in 
this case, the common ancestor is the mother or the father).  
 
When we compare less closely related individuals, they usually have shorter and fewer 
IBD segments. Figure 1.2 depicts the chromosome pairs for three 5th cousins sharing 
the same two common ancestors (great-great-great-great-grandparents). In this case, 
these three 5th cousins have each inherited only a small proportion of their DNA from 
the two common ancestors. Also, notice that because the transmission of DNA (through 
meiosis) has repeated several times over several generations, DNA from different 
common ancestors (red and blue) can end up on the same chromosome of an individual. 
Note that the gray portions of the chromosomes are inherited from other ancestors that 
are not shown in the diagram and may or may not contain segments that are IBD among 
the three 5th cousins. 
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Figure 1.2: Illustration of DNA that is identical-by-descent between distant cousins (C, D, E). 
Chromosomes of the common ancestors (A) and their children (B) are shown. Chromosomes of 
other intermediate generations are not shown in the diagram. The blue and red circles indicate 
chromosome segments that are IBD between the indicated chromosomes. See the caption of 
Figure 1.1 for more details. 
 
While the three 5th cousins in Figure 1.2 have all inherited some DNA from the common 
ancestors shown in the figure, only a few short segments of the chromosomes are 
actually identical in the same places on the chromosome of different cousins. In this 
example, we see that only 3 short chromosome segments, indicated by the blue and red 
circles, are IBD. One segment of DNA is shared by cousins C and D, and two segments 
are shared by cousins D and E. By contrast, cousins C and E, despite the fact that they 
are related through their great-great-great-great-grandparents (A), do not have any 
identical DNA that is IBD through these two common ancestors. 
 
The first goal of DNA matching is to accurately identify the DNA segments on the 22 
chromosome pairs that are identical-by-descent between pairs of individuals. 



6 
 

Importantly, we would like to identify these IBD segments for every pair of customers in 
our database. Doing this accurately as well as efficiently for millions of people is not a 
trivial problem, and is an active area of research in the scientific community.  

 

1.2. Genotype phasing 

The first obstacle we face is that although DNA is transmitted from parent to child in 
long sequences, we do not have direct access to these exact sequences. (It is currently a 
prohibitively expensive and time-consuming process to read the exact DNA sequence 
inherited from each parent.) Instead, we only observe the unordered pairs of 
nucleotides—the basic building blocks of DNA, typically represented as A, T, G or C—at 
a small fraction of locations in the genome. This means that we only sample a small 
fraction of the complete DNA sequence, and we do not necessarily know which 
nucleotide came from the mother and which came from the father. 
 
To better appreciate how this complicates identification of IBD, consider the genetic 
data in Table 1.3. This table illustrates how we represent customer genetic data in our 
database. At 8 specific DNA locations, or genetic markers, we have sampled the 
genotype from a single individual. The genotype is the pair of nucleotides present on the 
two chromosomes for an individual at a given genetic marker. (For more details on how 
these genetic markers are chosen, see Ethnicity Estimate White Paper). For example, at 
the first genetic marker, sometimes we observe individuals that have the “A” nucleotide 
(A stands for the nucleotide base adenine), and other times we observe individuals that 
have the “G” nucleotide (G refers to guanine). In other words, at this precise DNA 
location, we will either observe an A or G in an individual’s DNA. All the genetic markers 
we use are “polymorphic” (changing) in only a single nucleotide, hence they are called 
“single nucleotide polymorphisms,” or SNPs for short. At most SNPs, we observe only 2 
possible nucleotides. Geneticists call these two possibilities “alleles.”  
 
Since each person has two chromosome copies (one inherited from each parent), for a 
single individual we can either observe two A’s, two G’s, or an A and a G. In this 
example, at the first marker we observe two copies of the G allele in the person’s 
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genotype. SNP observations are easily stored in our databases as 0’s, 1’s and 2’s, 
representing the number of times we observe a specified allele in the genotype. 

 

 
 

Table 1.3: Example of a small amount of genetic data from a single individual at 8 genetic 
markers. The genetic data are unordered pairs of nucleotides, or genotypes, which we can 
represent as numbers—0, 1 or 2—for the number of times each of the alleles is observed in the 
genotype. 
 
In Table 1.3, at genetic locations 1, 2, 5, 6 and 7, the mother and father have transmitted 
the same allele to the child. As a result, we can tell directly from the genotype which 
allele comes from each of the two chromosomes. On the other hand, consider genetic 
marker 4. In this case, the the individual’s genotype is an A and a G; we do not know 
whether the A comes from the father and the G comes from the mother, or vice versa.  
 
If we want to compare individual chromosomes to identify which segments are IBD, we 
need to know the sequence of alleles (letters) on each chromosome. This first requires 
that we determine the assignment of alleles to chromosomes; for example, of the A and 
G alleles at marker 4 to each of the paternal and maternal chromosomes. We need to do 
the same for markers 3 and 8 as well. The process of determining the assignment of 
allele copies to chromosomes is called genotype phasing. In section 2, we describe our 
approach to this problem. 

 
  



8 
 

1.3. Finding matching segments 

Once the phasing is complete—that is, once we have assigned the two allele copies of 
each genetic marker to each of an individual’s two chromosomes—the second step is to 
identify identical DNA sequences between all pairs of individuals in the customer 
database. This is challenging because it involves comparing a very large number of 
sequences. As of this writing, more than 1.2 million genotyped DNA samples are in our 
database. This represents more than 700 billion pairs of individuals to check for 
matching segments. An additional complication is that the database is not static—it is 
continuously growing as more people take the AncestryDNA test.  
 
Quantitative geneticists have developed very fast software such as GERMLINE (Gusev et 

al., 2009) and Parente (Rodriguez  et al., 2015) to identify matches in a large number of 

genotype samples. However, even this very fast software is too slow to operate on our 
massive customer database. Therefore, we have developed software similar to 
GERMLINE that allows us to quickly detect matches in hundreds of thousands of 
phased genotypes, as well as quickly identify matches as new customers enter the 
database each day. We give an overview of our software, J-GERMLINE, in section 3. 

 

1.4. Assessing informativeness of matches for relationship 
estimation 

Detecting matches enables us to estimate relationships between people. In general, the 
more IBD detected between two samples of DNA, the more likely it is that the two 
people share a recent common ancestor (refer to Figures 1.1 and 1.2). In practice, 
however, the IBD we detect may reflect other factors, such as selective pressures 
(Albrechtsen et al., 2010), or more distant shared genealogy, in which case this IBD will 
confound the relationship estimates. An additional consideration is that since shorter 
IBD segments are difficult to identify accurately, a large proportion of shorter IBD 
segments that we detect could be false, and therefore could contribute errors to 
relationship estimation. In order to improve the accuracy of our relationship estimates, 
we have developed a simple, heuristic approach to quantify the “informativeness” of IBD 
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for estimating relationships. IBD segments that are expected to be less informative of 
recent relationships contribute less evidence to the relationship estimate. We describe 
this process, called “Timber,” in section 4. 

1.5. Estimating relationships  

Finally, the fourth challenge is how to translate the identification of IBD segments to 
accurate relationship estimates. Identical twins are IBD across their entire genome, and 
parent-child pairs are IBD on half their chromosomes. Beyond this, however, due to the 
random process of meiosis and recombination, the exact relationship between two 
individuals is uncertain based on IBD alone. On average, more closely related people are 
IBD across a greater portion of their genomes, but the correspondence between amount 
of matching and the actual pedigree relationship is variable. 
 
To develop a method for accurately estimating relationships from IBD, we use genetic 
data from thousands of pairs of individuals with known family relationships (either real 
people with documented pedigrees or simulated individuals with known pedigrees). 
Additionally, we use other information beyond IBD inferred from genetic data to ensure 
that our estimates of close relationships—specifically, parent-child and sibling 
relationships—are as accurate as possible. Methods for relationship estimation are 
detailed in section 5. 
 
See Figure 1.4 for an overview of the matching and relationship analysis pipeline. 
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Figure 1.4: Overview of the Matching and analysis pipeline. Underdog is the name of our 
genotype phasing algorithm; J-GERMLINE is our matching software; and Timber is our 
algorithm for quantifying informativeness of matching segments.  
 

 

2. Genotype phasing algorithm 
2.1. Introduction  

As explained in section 1.2, genotypes alone often cannot tell us which allele copy was 
inherited from the father and which was inherited from the mother. One exception to 
this is when we have genotypes sampled from both parents and child (called a trio). In 
this case, since the laws of genetic inheritance tell us that alleles can only be transmitted 
from parent to child in specific ways, we can use this information to very accurately 
assign alleles to each of the two chromosome copies. However, since we cannot depend 
on all customers taking the AncestryDNA test with both their parents, we need a more 
sophisticated approach that can accurately determine the phase of the genotypes—the 
assignment of alleles to chromosome copies—without parental information. 
 
The strategy is to simultaneously phase the genotypes from a large number of unrelated 
individuals. Since the genotypes observed at consecutive SNPs can be phased in many 
different ways, the basic principle is to prefer a phase that results in two sequences on 
each of the chromosomes that are also observed in many other samples. In other words, 
if the phasing yields a sequence that is unique, this is probably the wrong way to phase 
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the genotypes. This principle is based on the expectation that short sequences, called 
haplotypes, are typically shared by many people in a large population. 
 
Practically speaking, this means that we have a chicken-and-egg problem: accurate 
phasing of the genotypes requires us to determine the more common sequences (the 
haplotypes); to determine the more common haplotypes, we need to first know how to 
phase the genotypes. Fortunately, software such as BEAGLE (Browning and Browning, 
2007) and HAPI-UR (Williams et al., 2012) are designed specifically to solve this 
chicken-and-egg problem from thousands of samples simultaneously. 
 
An important benefit of such approaches is that phasing accuracy improves as more 
unrelated samples are analyzed simultaneously. Therefore, in principle we could achieve 
highly accurate phasing by simultaneously analyzing the hundreds of thousands of 
genotype samples from AncestryDNA customers. However, as fast as methods like 
BEAGLE and HAPI-UR are, they were not designed to jointly handle millions of 
samples. 
 
Therefore, we have developed a modified strategy, which we call “Underdog.” Underdog 
learns haplotype frequencies—or, more precisely, frequencies of “haplotype clusters”—in 
a large number of AncestryDNA samples. Then, once we have learned haplotype cluster 
frequencies, we use Underdog to quickly phase the genotypes of new customers.  

2.2. The BEAGLE genotype phasing algorithm 

From genotype data, BEAGLE builds a statistical model that summarizes the 
distribution of haplotypes in a population and uses the estimated haplotype distribution 
to estimate genotype phase. To make this computation feasible, we subdivide each 
chromosome into small segments (or “windows”) of 500 SNPs each, and we separately 
build a haplotype-cluster model for each of these chromosome windows. The probability 
distribution over haplotypes in a window is defined using a Markov model (Browning, 
2006). 
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To illustrate the phasing procedure, suppose that we have a training set of haplotypes 
that have been inferred with very high accuracy from genotypes (e.g., genotypes 
belonging to trios). BEAGLE can estimate genotype phase without such a training set, 
but it is simpler to explain the process this way, and it mirrors the scenario in which we 
use Underdog (below) to phase new customer genotype samples. 
 
More formally, within a single 500-SNP window, BEAGLE takes as input (1) a reference 
set R of previously phased genotypes, and (2) a query set U of unphased genotypes (see 
Appendix A). BEAGLE starts by randomly assigning phase to the genotypes U. Then it 
builds a new set of haplotype-cluster models from the randomly phased genotypes U, 
and the previously phased genotypes R. These haplotype-cluster models are then used to 
estimate a new (and hopefully more accurate) phase for genotypes U. The process 
iterates until the haplotype-cluster models converge to a solution. This final set of 
haplotype-cluster models is used to compute the most likely phase for each genotype in 
U. The final phased genotype sample is combined from the phase estimate in each 
window. For more details on the BEAGLE algorithm, consult the pseudocode in 
Appendix A and the original publication (Browning and Browning, 2007).  
 
The procedure BEAGLE uses to build models from a set of example haplotypes (R) is 
based on the ideas described in Ron et al. (1998); see also Browning (2006). Each node 
in the model represents a “cluster” of commonly observed haplotypes; each edge 
represents a transition from a more general haplotype cluster to a more specific one by 
splitting on the allele at a given level (i.e., SNP). A model is built recursively by splitting 
nodes at level d into two children each, one for each possible allele at that level, or SNP. 
However, nodes at level d + 1 whose haplotype clusters have “similar enough” 
distributions of haplotypes are merged together. After merging all such pairs of nodes, 
this completes the procedure for level d + 1, and the model building proceeds to the next 
level. The haplotype-cluster model, and the process of merging nodes, are illustrated in 
Figure 2.1. Algorithms 2 and 3 outline this model-building procedure in more detail. 
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Figure 2.1: An illustration of the haplotype-cluster model in BEAGLE within a single window 
and modifications to BEAGLE to handle large data sets (Underdog). For illustration, the 
window only includes 13 SNPs. (a) Each node corresponds to a cluster of haplotypes; each 
haplotype is represented by a sequence of colored dots. The start state consists of all the 
haplotypes in the training set (R). (b) Each node has up to two outgoing transitions for the two 
possible alleles (in the diagram, blue and red). A transition to a node at level d splits a 
haplotype cluster based on the SNP at position d in the haplotype. (c) The haplotype clusters at 
level 1 resulting from splitting on the first (left-most) SNP. Note that only the SNPs after the 
first are shown in the clusters, as the merging process at level d is concerned only with the 
distributions of the haplotypes that follow the dth SNP. (d) We keep track of the counts for each 
transition (shown as a number beside each arrow). They will determine the transition 
probabilities for the HMM. (e) These two nodes at level 2 will be merged during the learning 
process because the distribution of haplotypes in each of the nodes is identical after splitting. 
(f) BEAGLE models do not have edges for haplotypes that do not appear in the training set 
(e.g., red, red, blue); in Underdog, however, we allow for an edge corresponding to a 
haplotype count of zero. When we initialize the model’s transition probabilities, we assign a 
nonzero likelihood to such haplotypes. (g) We continue to split and merge nodes (see Algorithm 
2) until all D = 13 alleles in the haplotypes are represented in the model. Level D will always be 
a single terminal node. In the diagram, we only show the first 3 of the D = 13 levels. 
 
So far, we have described a model that defines a probability distribution for a single 
haplotype sequence within a single window. To apply this model to the genotype data, 
we need to jointly model two haplotypes; that is, we have one haplotype-cluster model 
for each chromosome in the pair. Conveniently, a pair of haplotype-cluster models can 
be used to define a hidden Markov model (HMM), in which: (1) we have one hidden 
state for each level, or SNP; (2) each hidden state in the HMM represents the 
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assignment of the haplotype-cluster model state to each of the chromosomes at the 
given SNP; and (3) the HMM transition probabilities are defined by the counts of 
transitions in the haplotype-cluster model (Figure 2.1, part d). Therefore, the set of all 
paths through the HMM that are consistent with the genotype yields a probability 
distribution over possible ways of phasing the genotype. Once the haplotype-cluster 
model is built, we define an HMM, and this HMM allows us to efficiently sample the 
phase given the genotype. The genotype phase estimate (see Algorithm 1 in Appendix A) 
is the most likely hidden state in the HMM, and this is efficiently computed using the 
Viterbi algorithm (Rabiner, 1989). The final phase across the entire chromosome is 
obtained by joining the phase estimates from individual windows; see Appendix B for 
details. 
 
An important limitation of BEAGLE is that the computational expense of the model-
building process increases with the size of R and U. Further, the output from BEAGLE 
cannot be easily reused to phase new genotype samples. To surmount these limitations, 
we propose an alternative approach: we learn haplotype-cluster models once from a 
large training set of phased genotypes, we store the learned models to file, then we use 
these models to quickly phase new genotype samples. We describe these enhancements 
to BEAGLE—what we call Underdog—in appendix B. In the following section, we 
describe our experiments that demonstrate improvements in computational cost and 
phasing accuracy using Underdog. 

2.3. Evaluation of genotype phasing algorithms 

Here, we compare the run time and phasing accuracy of BEAGLE applied to datasets of 
different sizes against the runtime and accuracy of the Underdog phasing algorithm. We 
evaluated phasing accuracy on a test set of 1,188 unrelated individuals from our 
database that have been phased accurately because they each belong to a trio and were 
phased using parental information (that is, we used the genotypes of both parents to 
determine phase, but we do not include the parents in the test set available to BEAGLE 
and Underdog). To assess phasing accuracy, we consider only genotypes that can be 
phased unambiguously in the trio. Another evaluation metric we use is impute error—
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the rate at which genotypes are incorrectly estimated when 1% of genotypes are set to 
missing uniformly at random.  
 
Table 2.1 shows that our implementation infers the phase of new genotype samples 
more accurately than BEAGLE—and with much lower computational cost—provided 
that we are able to make use of a very large panel of phased genotypes. Underdog is able 
to achieve high accuracy because it can benefit from hundreds of thousands of samples. 
Further, our distributed processing implementation leads to very low run times. As the 
AncestryDNA database has grown, we have been able to construct larger and larger 
phasing panels, leading to greater accuracy in phasing customer samples. (As of the 
beginning of 2016, customers taking the AncestryDNA test are phased using a panel of 
more than 300,000 genotypes.)  

 

 
 

Table 2.1: Results from an experiment comparing phasing accuracy using BEAGLE version 
3.3.2 with data sets of different sizes against phasing accuracy using Underdog with a much 
larger reference panel of 189,503 samples, in which these samples were phased in large 
batches using HAPI-UR. These are results for chromosome 1 only. We run BEAGLE using 
default parameters, except we set n = 20 (this is the number of phasing estimates that are 
simulated for each genotype sample). Phasing error is evaluated in a test set with 1,188 trio-
phased samples. Phasing error, or "switch-error rate," is calculated as the rate of 
disagreement between the estimated phase and the trio-phased haplotype, only for loci in 
which phase can be determined unambiguously; i.e., sites with at least one homozygous 
individual in the trio (Williams, 2012). “Model size” refers to the total number of haplotype-
cluster model states across all chromosome windows. For Underdog, we show two 
computation times: the total time taken to complete the computation on a single CPU, and the 
computation time on a Hadoop cluster with 20 32-core compute nodes (we use the MapReduce 
framework; see Dean and Ghemawat, 2008). 
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In summary, since we have decoupled the model-building process from estimating 
genotype phase, we observe a large reduction in computational cost for estimating phase 
in new samples. The most computationally intensive step—building the haplotype-
cluster models—is a one-time-only computational investment. Another benefit to this 
approach is that there is no “batch effect” in which the phasing estimates are slightly 
different depending on which samples are included in the batch to be phased 
simultaneously. This ensures greater consistency in the phasing estimates.  

 

3. Detecting IBD 
3.1. Matching Algorithm  

Once we have estimated the phase of each genotype sample, we turn to the problem of 
finding IBD segments, or “matches,” shared by pairs of samples. This effectively reduces 
to the problem of finding long sequences (strings of A’s, T’s, G’s and C’s) that are 
identical in pairs of chromosomes. However, there are several practical issues that arise 
due to the peculiarities of genetic data, as well as the size of our data set, that make this 
problem more complex than it might first appear. In this section, we first describe our 
approach, then explain how this approach addresses some of the common problems in 
finding matches from phased genotype data. 
 
Our general strategy is divided into 5 steps. We illustrate the individual steps in Figure 
3.1.  

 
1. Subdivide each chromosome into short segments, which we call “windows.” In 

our implementation, all windows contain exactly 96 SNPs. This number was 
chosen to balance computational cost and accuracy. (Note that these windows are 
not the same as the ones chosen for genotype phasing [see Figure 3.1, section B] 
and that we use 10 SNPs per window in the example in order to make it easier to 
follow.) 

2. For each pair of individuals, identify windows in which the alleles at all SNPs in 
one of the individual’s two phased haplotypes are identical to all the alleles at the 
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same positions in one of the other individual’s phased haplotypes. We call these 
“seed matches” (see Figure 3.1, section D). 

3. For each seed match, we attempt to extend the seed match in both directions 
along the chromosome until (a) the beginning or end of the chromosome is 
reached, or (b) a homozygous mismatch is detected. A homozygous mismatch is a 
pair of genotypes at the same SNP that are incompatible regardless of how they 
are phased (for example, AA and GG). The estimated IBD region is defined by the 
start and end positions of the SNPs included in the extended segment (see Figure 
3.1, section D). 

4. Calculate the length of the candidate matching segment in terms of genetic 
distance, measured in centimorgans (cM). Genetic distance is proportional to the 
expected rate of recombinations along that stretch of chromosome. Since 
individual chromosomes accumulate recombination events through successive 
generations of inheritance, IBD segments spanning large genetic distances 
suggest more recent inheritance. Below, we explain how we use the genetic 
distance of detected IBD segments to estimate relationships. 

5. If the segment is longer than 6 cM, we store that segment as a match in the 
database. 

 
The procedure we have outlined here is very similar to the strategy implemented in the 
software GERMLINE (Gusev et al., 2009). 
 
As we described in step 2, we use the phased genotypes to identify seed matches. In the 
example (Figure 3.1), we identify 2 seed matches in 2 adjacent windows. Next, we extend 
the candidate IBD segment until a homozygous mismatch is encountered. In the 
example, the error in the estimated phase here does not prevent SNPs in this window 
from being included in the IBD segment. This illustrates the importance of not relying 
solely on the haplotype sequences identified in the genotype phasing step to identify 
IBD segments. Although our phasing is very accurate overall, even small amounts of 
phasing error will confound detection of long segments that are IBD. Our solution is to 
use only use the phased genotypes to suggest initial candidates (seed matches), then, in 
step 3, we use the unphased genotype data to extend the matches. In this example, the 
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matching segment is extended across most SNPs shown in the figure, and is nearly 
identical to the length of the ground-truth IBD segment.  

 

 
 

Figure 3.1: IBD detection example in two DNA samples at 40 consecutive genetic markers 
(SNPs). In A, we show the (unobserved) ground-truth sequences at the 40 SNPs, highlighting 
in red the pair of sequences that are IBD. B shows the genotype data—unordered pairs of 
alleles at 40 SNPs—that are available in our data. Note that genotypes “AG” and “GA” are 
identical because the order of the alleles in the genotype is not informative. These genotypes 
are subdivided into 4 windows each containing, for illustration only, 10 SNPs. C shows the 
genotype phase—assignment of the alleles to the two chromosome copies—that is estimated by 
Underdog, highlighting in red the same IBD segment in A. Observe that Underdog incorrectly 
phases the 7 right-most SNPs in the IBD segment. D shows the results of matching by J-
GERMLINE to the phased genotypes shown in C. First, two windows containing seed matches 
are identified. The seed matches, highlighted in light blue, are identical sequences within a 
window. Second, beginning with one of the seed matches, the matching segment is extended in 
both directions until a homozygous mismatch is identified. The homozygous mismatches are 
indicated with an asterisk (*). The final IBD segment spans 37 SNPs, as indicated by the 
orange bar. This is nearly identical to the SNPs spanned by the ground-truth IBD segment 
(shown in A). The only error is the inclusion of an additional SNP on the left-hand side that is 
reached before a homozygous mismatch.  

 
An important feature of our method is that we do not keep track of all matching 
segments; in step 5, we filter out a candidate match if its genetic distance is less than 6 
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cM. The cutoff of 6 cM was chosen after considering several factors. The first factor is 
data storage. Since the number of matching segments grows exponentially with 
decreasing length, we dramatically reduce the storage requirements of our matching 
database by increasing the cutoff. A second, and more critical, factor is that the accuracy 
of IBD detection drops rapidly with decreasing IBD length—that is, the shorter the 
length of the detected IBD segment (expressed in genetic distance), the less likely it is 
that the detected chromosome segment is truly inherited from a common ancestor.  
 
To illustrate the phenomenon of decreasing accuracy with decreasing IBD length, we 
examine concordance of matching between parent and child using the described IBD 
detection strategy. Typically, if two individuals, X and Z, are IBD across a given 
chromosome segment, then we would expect that Z is also IBD with at least one of the 
parents of X. (It is conceivable that X and Z could share IBD without a parent of X 
sharing the same IBD segment, but this should occur very rarely.) Therefore, we can 
assess accuracy of IBD detection by quantifying concordance of IBD between parents 
and child; more accurate IBD detection should yield better parent-child concordance.  
 
Figure 3.2 summarizes IBD detected in 20,000 matches chosen so that for every match 
between individuals X and Z, there is a corresponding match detected between 
individuals Y and Z, such that Y is a parent of X. As expected, most of the points in the 
scatterplot cluster around the diagonal (the dotted orange line); for these points, the 
amount of IBD detected in the child is nearly identical to the amount of IBD detected in 
the parent. However, as we move toward the bottom-left corner of the plot, more and 
more points are distributed away from the diagonal This shows that concordance is not 
as strong for smaller amounts of IBD. (Note that the smaller number of points away 
from the diagonal near 5 cM is an artifact due to the fact that we are only looking at 
pairs with total IBD at least 5 cM.) 
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Figure 3.2: Concordance of matching between child and parents. Each point in the 
scatterplot corresponds to triple (X,Y,Z) such that individuals X and Z share IBD > 5 cM, 
individuals Y and Z share IBD > 5 cM, and individual Y is a parent of X. A total of 20,000 such 
triples are plotted in this figure. The horizontal and vertical axes give the total IBD detected (in 
cM). Note that IBD is shown on the logarithmic scale and only for IBD < 100 cM. 
 
We take a second look at this concordance in Figure 3.3. Here, we quantify concordance 
by counting the number of times that IBD is shared with the mother, father, or both 
parents, stratified by total IBD length in the child—in cM. (We do not compare exact 
locations of IBD segments, only total IBD length between pairs of individuals.) As the 
length of the detected IBD segment between child X and individual Y decreases, it is less 
likely that we also detect IBD > 6 cM between individual Y and one of X’s parents. This 
indicates that detection of smaller amounts of shared IBD is less accurate. In other 
experiments, Durand et al. (2014) have shown that GERMLINE is particularly 

inaccurate for IBD segments less than 4 cM.  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Figure 3.3: Concordance of matching between child and parents. For a given total IBD length 
between child X and individual Y, we count the number of times that we detect IBD with this 
length and compare this to the number of times that we detect IBD (with total length > 6 cM) 
between the father of X (blue) and with the mother of X (green), and with both parents 
(orange). This figure is compiled from matching results on 16,178 mother-father-child trios. 
 
One complication is that accurate detection of IBD requires that we have a high density 
of SNPs in all regions of the genome. The array technology that we use to acquire the 
genotype data yields high-density SNP data across most of the genome, but there are 
some genomic regions with unusually low SNP density. This means that any matches 
that overlap these SNP-poor regions will be less reliable. To counteract this problem, we 
discount these matches by reducing their total length (in cM). 
 
Another complication is that the identification of seed matches quickly becomes 
intractable as the number of DNA samples grows. As of January 2016, the AncestryDNA 
database contained roughly 1.5 million samples. To identify seed matches in a database 
of this size, about 4 × 500 billion sequence comparisons would have to be made for each 
96-SNP window. To make this step tractable, we use hashing. Hashing avoids explicitly 
making billions of sequence comparisons. More precisely, we implement a hash 
function, f(h,w), that maps a character string h and window identifier w to an integer 
value. It has the property that if two different individuals have identical strings in the 
same window, they will have the same value of f(h,w). This makes it possible to quickly 
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identify exact matches in a scalable fashion. Since the number of seed matches within a 
window is typically a very small proportion of the total number of chromosome pairs, 
hashing yields extremely fast detection of seed matches. 
 
GERMLINE is able to efficiently and accurately identify IBD segments suggestive of 
recent common inheritance in a large database of genotypes. However, we cannot use 
GERMLINE directly for detecting matches among AncestryDNA genotype samples 
because GERMLINE was not designed to efficiently detect IBD in a growing database. 
Therefore, we have developed our own software toolkit for IBD detection and storage 
called J-GERMLINE. Instead of detecting IBD in all samples simultaneously, it 
processes genotypes incrementally as new customer samples are entered into the 
AncestryDNA database. In addition, we achieve improved computational scalability 
using the MapReduce framework, which allows the computation to be distributed across 
several compute nodes. 

 

3.2. Performance of J-GERMLINE 

To demonstrate the advantages of our software implementation, J-GERMLINE, we 
compare the processing times of GERMLINE and J-GERMLINE in genotype data sets of 
different sizes.  
 
First, we demonstrate that incrementally detecting IBD using J-GERMLINE yields 
significant reductions in computational expense compared to re-running GERMLINE. 
Figure 3.4 compares the amount of time it takes to detect new IBD segments when we 
add 1,000 genotype samples to databases of different sizes. The processing time for 
GERMLINE grows more rapidly than J-GERMLINE because GERMLINE re-computes 
IBD results for all samples, whereas J-GERMLINE only recomputes IBD between 
samples X and Y, in which X is any sample in the existing database, and Y is a new 
sample. 
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Figure 3.4: Processing time of GERMLINE and J-GERMLINE for detecting IBD in 1,000 new 
genotype samples added to an existing genotype database (base set) of different sizes. In this 
setting, the run time of J-GERMLINE increases linearly in the size of the base set, while the run 
time of GERMLINE increases quadratically. Both GERMLINE and J-GERMLINE are run on a 
single CPU. 
 
Next, in Figure 3.5 we show that making more computational resources available to J-
GERMLINE reduces the time to process the same data set. In this example, the aim is to 
detect IBD in 1,000 new genotype samples added to an existing database of 20,000 
samples. When the computation is distributed over six nodes, it only takes 100 seconds 
to detect IBD in the 1,000 genotypes. Beyond six nodes, adding more compute nodes 
results in diminishing improvements in processing time, although exact results are 
somewhat dependent on the specific Hadoop implementation and the architecture of 
the compute cluster. 
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Figure 3.5: Relationship between J-GERMLINE processing time and the number of compute 
nodes available for processing. In this experiment, we use J-GERMLINE to detect IBD in 1,000 
new genotype samples added to an existing database of 20,000 samples. Since the 
computation time can vary slightly, we repeated this experiment 10 times, and we report the 
mean (circles) and standard deviation (error bars) over these 10 replicates. Here, each 
compute node simultaneously runs up to 16 Hadoop MapReduce mappers.  
 
In summary, J-GERMLINE allows us to rapidly and accurately identify IBD segments in 
a large, continuously growing database. The distributed processing architecture of J-
GERMLINE gives us the flexibility to respond to increasing processing demands as the 
database grows. Next, we consider the challenge of using IBD information to make 
accurate estimates of familial relationships. 

 

4. Adjusting IBD for relationship estimation 
4.1. Motivation 

IBD detected between two genotype samples can be used to estimate a pedigree 
relationship because more closely related people have, on average, more DNA that is 
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IBD. To improve the accuracy of this estimate, we first apply a simple algorithm that de-
emphasizes the evidence from detected IBD (see section 3) that is less likely to be 
informative of close relationships. We call this algorithm “Timber.” 
 
To understand the motivation behind this algorithm, it is instructive to examine 
matching results aggregated over a large number of samples. In Figure 4.1, we show 
aggregated matching results for three individuals selected from our database. For each 
of the 96-SNP windows used for IBD detection, Figure 4.1 shows the total number of 
IBD segments longer than 6 cM that were detected in pairs (i, j), in which i is the 
selected individual, and j is an individual in from a reference panel of 325,932 genotypes 
(the Timber reference panel). Section A illustrates a common case in which IBD is 
detected in individual i with only a very small proportion of samples in the Timber 
reference panel within any given region of the genome. This reflects our expectation that 
very few pairs of individuals in the AncestryDNA database are closely related. By 
comparison, individual B has a substantially higher rate of matching with the Timber 
reference panel. Many factors could explain the different genome-wide rates of IBD 
shared by individuals A and B. For example, if we assume that IBD detection is equally 
accurate in individuals A and B, then demographic or historical factors could explain the 
different rates of matching; for example, one hypothesis could be that individual B’s 
ancestors have lived in the United States for a longer period of time, whereas individual 
A’s ancestors are more recent immigrants to the United States. Under this scenario, we 
would be more likely to find other relatives of individual B than individual A since, as of 
this writing, the vast majority of people who have taken the AncestryDNA test are from 
the United States. This illustrates a trend that we have observed more generally: the 
overall pattern of IBD can differ substantially from one individual to the next, and these 
differences may reflect different ancestral origins. 
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Figure 4.1: A, B, and C show (separately for three individuals) match counts in all 96-SNP 
windows across the genome. More specifically, in each window on autosomal chromosomes 1 
through 22, we count the number of times that the window overlaps an IBD segment detected 
between the given individual (labeled A, B, or C) and individuals included in a reference panel 
of 325,932 genotypes. 
 
Next, consider the individual in section C, who has a higher rate of matching than both 
individuals A and B. In addition, the matching rate is highly variable across the genome; 
certain regions, such as a region near the centromere of chromosome 3, and a region on 
chromosome 10, overlap with an unusually large number of detected IBD segments. If 
all detected IBD is due to inheritance from recent common ancestors, it is extremely 
unlikely that we would observe such excessive IBD in specific regions of the genome. 
This suggests that many of these spikes in IBD are unlikely to reflect recent inheritance 
from common ancestors. Instead, these spikes more likely reflect other demographic 
factors (see, for example, Albrechtsen et al., 2010). The implication is that IBD detected 
in regions with high rates of matching is expected to be less useful for estimating recent 
relationships.  
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Motivated by these observations, we have developed a procedure, Timber, that uses 
match counts aggregated over thousands of samples to inform relationship estimation. 
The strategy is to analyze matching results accumulated over a large number of 
genotype samples, then identify, separately for each individual, regions of the genome 
with unusually high rates of matching. Once we have identified these regions, we reduce 
the genetic distance of detected IBD segments overlapping these regions. We call these 
adjusted distances “Timber scores.” Since individuals can vary widely in genome-wide 
patterns of matching, as we observed in Figure 4.1, we run this analysis separately for 
each genotype sample. In the next section, we describe the Timber algorithm in greater 
detail. 

4.2. The Timber algorithm 

To compute Timber scores for all IBD segments, we take the following steps: 

 
1. Select the Timber reference set, denoted by R. Our reference set contains 325,932 

genotype samples. 
2. Subdivide the genome into windows. Here, we use the same 96-SNP windows 

used to detect IBD. Let n be the number of windows. 
3. For each sample i, and for each window, count the number of matches detected in 

J-GERMLINE between sample i and i' ∈ R that overlap the window. We 

represent these counts as a vector, Ci = (Ci,1, Ci,2, …, Ci,n). 
4. For each sample i, compute weights Wi = <Wi,1, Wi,2, …, Wi,n> = f(Ci), in which 

each weight Wi,j is a number between 0 and 1, and f is a probability density 
function fitted to the matching data Ci  for sample i. (Here we do not discuss the 
specification of this model, and the procedure for fitting this model to the data.) 

5. Compute the Timber score for each matching segment. Let g be a matching 

segment detected in pair (i, i'), and let j∈ g be the set of all windows j that 

overlap segment g. The Timber score for segment g is defined as TimberScoreg 

=j∈g dist(j) × Wi,j × Wi',j, in which dist(j) is the genetic distance spanned by the 

SNPs assigned to window j. 
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See Appendix C for a description of these same steps in pseudocode. 
 
When an IBD segment does not overlap a region with an unusually high rate of 
matching, the final Timber score is nearly identical to the original length of the IBD 
segment. On the other hand, when some of the windows overlapping the segment 
exhibit an abnormally high rate of matching with the Timber reference panel, the 
Timber score will be smaller than the original genetic distance of the IBD segment. 
 
One drawback to this procedure is that it considers each window in isolation, ignoring 
the information from neighboring windows on the same chromosome. To illustrate why 
this can be a limitation, consider the case when IBD between two individuals spans a 
large proportion of chromosome 1. In this case, we can usually be confident that the 
detected IBD was inherited from a recent common ancestor, and therefore it would not 
make sense to de-emphasize IBD which overlaps regions on the chromosome with an 
unusually high rate of matching. Thus, Timber is most useful for shorter IBD segments 
for which we have less confidence in the result. Therefore, we only apply Timber to 
matches with total IBD less than 90 cM. 
 
In summary, we have used our large genetic database to identify unusual matching 
patterns, and by quantifying these unusual patterns, we adjust the relationship evidence 
separately for each individual. Timber improves relationship estimates for more distant 
relatives, such as 5th or 6th cousins, by downweighting the evidence from regions that 
are less likely to be informative of close relationships. 

5. Estimating familial relationships from IBD 
5.1. Background 

As explained in section 1.1, more distantly related individuals (e.g., fifth cousins) are 
expected to inherit a smaller proportion of their genome from shared ancestors than 
more closely related individuals (e.g., first cousins). As we have also discussed, these 
chromosomal segments inherited from a common ancestor are said to be identical-by-
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descent (IBD). We have devoted much of this document to describing how we analyze an 
individual’s genotype to detect all IBD segments (greater than 6 cM) in our database in a 
way that balances accuracy and computational efficiency. 
 
The final step in our analysis is to use the amount of detected IBD between a pair of 
individuals, following the Timber adjustments described in the previous section, to 
estimate a pedigree relationship for each pair of individuals who share one or more IBD 
segments. More specifically, the objective of relationship estimation is to infer, as 
accurately as possible, the number of meioses (see Figure 5.1) separating two 
individuals.  
 
In Figure 5.1, we illustrate how the number of reproductive events, or number of 
meioses (see section 1.1), corresponds to a pedigree relationship. In section A, two 
meioses separate two (full) siblings; each meiosis is indicated by a dotted line joining a 
child and parent in the pedigree diagram. In section B, the most distantly related 
individuals in the pedigree are a pair of third cousins, in which the two common 
ancestors are great-great-great-grandparents of the individual on the left and great-
grandparents of the individual on the right, respectively. The two third cousins are 
separated by 8 meioses. 
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Figure 5.1: Two examples illustrate the correspondence between pedigree relationship and 
number of reproductive events (meioses). Reproductive events are indicated by dotted lines 
between individuals in the pedigree diagram. Note that only one of two parents are shown. A, 
shows the pedigree for two (full) siblings sharing the same two parents (only one parent is 
shown). B, shows the pedigree for a more extended family in which the two most distantly 
related individuals are third cousins.  
 
Since transmission of DNA from parents to child is inherently a random process 
(explained in section 1.1), the amount of the genome that is IBD between two siblings 
can vary. As the number of reproductive events separating two individuals increases, so 
does the number of random transmissions, leading to greater variation in the proportion 
of the genome that is inherited from common ancestors. Therefore, we face inherently 
more uncertainty in estimating more distant relationships. We explore these concepts in 
greater detail in the next section. 

5.2. Method for estimating relationships 

To characterize the relationship between the amount of shared IBD and number of 
separating meioses, we study IBD inferred from genotypes of individuals with known 
relationships. Although it is possible, at least in principle, to use genotypes annotated 
with relationships for this aim, this generally leads to errors in the analysis because 



31 
 

pedigree relationships are recorded incorrectly on occasion. Thus, we opted to generate 
genotypes by simulation. That way, we can control the type of pedigree relationship, and 
ensure that we have accurate genetic data from a wide variety of pedigree relationships. 
Although simulations cannot capture the full complexity of the present-day human 
population, we attempt to make these simulations more realistic by generating offspring 
genotypes in silico from customer genotypes.  
 
We simulate reproductive events from a subset of the 24,362 customer genotypes who 
are for the most part unrelated, since they were selected so that no pair of samples 
shares more than 20 cM IBD (as detected using the IBD analysis described in previous 
sections). We draw from these unrelated samples at random, and without replacement, 
to simulate pedigree relationships as close as parent-child and as distant as tenth 
cousins. All pairs of individuals in this simulation share exactly two ancestors, or no 
ancestors; we do not consider other types of pedigree relationships, such as half-
siblings. Once we have generated the pedigree relationships and genotypes for this 
simulation experiment, we run the algorithms described above to detect IBD segments 
in these data. 
 
The IBD distribution from this simulation experiment is summarized in Figure 5.2. 
(Note that these results are based on unadjusted IBD lengths; that is, prior to running 
the Timber algorithm. The conditional probability distributions for Timber-adjusted 
lengths are slightly different, and are not shown here.) As discussed above, we observe 
that the amount of IBD decreases, on average, for more distant relationships. We also 
observe greater variation in IBD—that is, probability distributions that span a wider 
range of IBD lengths—when the number of separating meioses is larger; note the 
distributions showing much greater overlap toward the bottom of Figure 5.2. As a result, 
given smaller amounts of IBD detected, we are typically more uncertain about the exact 
relationship that explains the detected IBD. 

 



32 
 

 
 

Figure 5.2: Distribution of total IBD, in cM, detected in pairs corresponding to different 
simulated pedigree relationships, grouped by number of separating meioses. One meiosis 
corresponds to parent-child relationships, two meioses corresponds to grandparent-child or 
(full) siblings, and so on. Each curve represents the conditional probability distribution of the 
number of separating meioses given total detected IBD. The conditional probability 
distributions for 10 or more separating meioses are not shown. Note that total IBD lengths—
the vertical axis in the plot—are shown on the logarithmic scale, and only IBD greater than 40 
cM is shown. For illustration, on the right-hand side we show intervals corresponding to 
maximum-probability relationship estimates. 
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To illustrate the procedure for relationship estimation, on the right-hand side of Figure 
5.2 we draw IBD intervals corresponding to the maximum-probability relationship 
estimate. (Note that the exact intervals used to estimate relationships for AncestryDNA 
customers may differ slightly from the ones shown in Figure 5.2. In addition, we 
incorporate other information into the computation of final relationship estimates; see 
below. Thus, these intervals are shown primarily to illustrate the method.) Each of these 
intervals gives the number of separating meioses that is most likely given the amount of 
IBD detected in a pair of related individuals (assuming they are separated by fewer than 
10 meioses). For a given number of meioses, the interval is extended across the locations 
on the vertical axis where the corresponding probability density curve is to the right of 
the other curves. 
 
Beyond the intervals illustrated in Figure 5.2, it is also important to consider the 
uncertainty in a particular relationship estimate. For example, consider the case when 
two individuals are estimated to share 1,000 cM IBD. According to our simulations, it is 
very likely that these two individuals are separated by exactly 4 reproductive events, 
such as first cousins (see Figure 5.2). Therefore, we could report this relationship 
estimate with high confidence. On the other hand, consider the case when two 
individuals share 650 cM IBD. In this situation, we cannot be certain whether the two 
individuals are separated by 4 or 5 reproductive events; for example, they could be first 
cousins, or first cousins once removed. This uncertainty is accentuated for more distant 
relationships and demonstrated by the greater amount of overlap of the corresponding 
probability density curves in Figure 5.2. We account for greater uncertainty in more 
distant relationships when delivering estimates to customers by reporting a range of 
possible relationships (e.g., third to fourth cousins). 
 
Once we have made a prediction based on estimated IBD, we take an additional step to 
ensure highly accurate estimates of close relationships—specifically, pairs separated by 
at most 3 meioses. Although our estimates of close relationships are already expected to 
be highly accurate based on IBD alone, additional factors not accounted for in our 
simulations, such as unusually high phasing error, can occasionally contribute to errors 
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in our relationship estimates. Therefore, we take an additional step to detect and correct 
these errors.  
 
To illustrate the benefit of this final step, we compile an additional matching statistic 
from the genotype data, and show that this statistic, when combined with the estimates 
of IBD, improves separation of close pedigree relationships, thereby augmenting our 
ability to accurately estimate these relationships. Figure 5.3 shows the empirical 
distribution of two matching statistics—total detected IBD, and an additional statistic 
that provides an estimate of the proportion of the genome that is “IBD2.” With total IBD 
alone (the vertical axis in Figure 5.3), we can determine with near-perfect accuracy 
whether a pair of individuals are parent-child or full siblings. By contrast, full siblings 
and half siblings show a great deal of overlap in total IBD shared, so we cannot 
determine as accurately whether a pair of individuals are full siblings or half siblings. 
However, when we consider the total IBD and IBD2 statistics jointly, in Figure 5.3 we 
observe that these data clearly separate parent-child pairs from full siblings, and greatly 
improve the separation of full siblings and half siblings. Therefore, by using both 
matching statistics simultaneously, we achieve nearly 100% accuracy in distinguishing 
close relationships—identical twins, parent-child, full siblings, and half siblings. 
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Figure 5.3: Empirical distribution of two matching statistics in approximately 400,000 pairs 
(i, j), in which total IBD shared between i and j is greater than 1,300 cM. Each point 
corresponds to a pair (i, j), and is colored by the final relationship estimate. The vertical axis 
shows the shows the total detected IBD between i and j, in cM. The horizontal axis shows an 
additional matching statistic—the proportion of SNPs within 200-SNP segments in which the 
genotypes at all 200 SNPs are identical in i and j. This additional statistic gives an estimate of 
the proportion of the genome that is IBD across both haplotypes (IBD2). 
 

6. Summary and future plans 

In this technical document, we have given an overview of our algorithms for phasing 
genotypes, detecting IBD, and estimating relationships in the AncestryDNA database. 
Our aim in developing these algorithms is to help AncestryDNA customers gain insight 
into how they are related to other people who have taken the AncestryDNA test. Each 
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relationship estimate delivered to an AncestryDNA customer may yield a genealogical 
discovery. 
 
Some of the technical advances we have described here, such as accurate genotype 
phasing, have been achieved by developing algorithms that can scale to the massive 
amount of genetic data from our AncestryDNA customers. In addition, several 
advancements have been made possible by the large number of customers that have 
consented to share their genetic data for research and development of new and 
improved algorithms. Therefore, we expect further improvements in DNA matching as 
the AncestryDNA database grows further. 

 

 
Appendix A. BEAGLE genotype phasing 
algorithm pseudocode 
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Appendix B. Underdog genotype phasing 
algorithm 
 
Our primary aim is to learn haplotype-cluster models from large training sets and use 
them to phase samples efficiently and accurately. Here we introduce some modifications 
to BEAGLE so that the algorithm is better suited to this aim. Our new algorithm is called 
Underdog. 
 
BEAGLE only represents haplotypes that actually appear in the training examples. 
However, since we would like to phase new genotype samples that do not necessarily 
appear in the training set, we set the transition probability for allele a at a given SNP to  

 

  
 (Eq. B1) 
 
where na is the number of times allele a is observed in training data, and nā is the 
number of times the other allele is observed. This is compared with the BEAGLE 
formula shown in Algorithm 3. Here, γ is a positive number between 0 and 1. To 
illustrate the rationale for this choice of transition probability, consider the bottom state 
of level 2 in Figure 2.1. Instead of having only one transition (to the bottom state in level 
3) with 100% probability, we add a second transition for the blue allele (also to the 
bottom state in level 3) that is visited with probability γ. We define all transition 
probabilities in the haplotype-cluster model in this way. These transition probabilities 
are only noticeably different from the transition probabilities in BEAGLE when one 
allele occurs very infrequently in the training set within a given cluster of haplotypes. 
With this modification, Underdog allows for genotype phase based on haplotypes that 
did not appear in the training set. 
 
Although the BEAGLE haplotype-cluster models are intended to be parsimonious, 
building these models from hundreds of thousands of haplotypes can still yield very 
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large models with millions of states, making it difficult to phase genotype samples in a 
reasonable amount of time. To address this problem, we first observe that although 
there is typically a large number of possible ways of phasing a sample, most of these 
possibilities are extremely unlikely conditioned on a specific haplotype-cluster model. In 
other words, most of the probability mass is typically concentrated on a small subset of 
paths through the HMM. To avoid considering all possible paths (which is 
computationally expensive), at a given level d we retain the smallest number of states 
such that the probability of being in one of those states is greater than 1 - ε. Even for 
small values of ε, this heuristic dramatically decreases the computational cost of 
sampling from the HMM, and computing the most likely phase using the Viterbi 
algorithm (Figure B1), while incurring very few additional phasing errors. 

 
 
Figure B1: Relationship between choice of HMM parameter ε and average computation time 
for phasing a genotype sample (based on chromosome 1 only). If we set ε = 0, the average 
sample phasing time is 63 seconds, and the average phasing error rate is 0.93%. For choices of 
ε that are larger, but not too large, we achieve comparable phasing accuracy with a dramatic 
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reduction in computational expense. Note that the computation time here does not include file 
input/output, nor the time taken to merge the phasing results from multiple windows. 
 
The second modification we make to BEAGLE concerns the criterion for deciding 
whether two haplotype clusters (i.e., nodes of the haploid Markov model) should be 
merged during model learning (see Algorithm 4). Since the standard method is overly 
confident for frequencies that are close to 0 or 1, we regularize the estimates using a 
symmetric beta distribution as a prior. Specifically, haplotype clusters x and y are not 
merged unless the following condition is satisfied for some haplotype h: 

  
 (Eq. B2) 

 
where nx and ny are the sizes of clusters x and y. The posterior allele frequency 
estimates in this formula are  
 

  
 (Eq. B3) 
 
where nx(h) and ny(h) are the numbers of haplotypes that begin with haplotype h. We 
set the parameters of the Beta prior (the prior counts), α and β, to 0.5. Compare this 
criterion to the one used in Browning (2006), (also refer to Algorithm 3), which merges 
two clusters unless the following relation holds for some h: 

 

 
 (Eq. B4) 
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where 𝑃"
($)	is the proportion of haplotypes in cluster x with that begin with haplotype h, 

and 𝑃'
($)	is the proportion of haplotypes in cluster y that begin with h. We evaluated the 

phasing accuracy of the algorithm using a few different values for constant C and settled 
on C = 20. 
 
Algorithm 4 is the modified version of BEAGLE’s procedure (Algorithm 3) that applies 
Eq. B2 to merging haplotypes during model building.  
 
For computational efficiency, on each chromosome we estimate the genotype phase 
within 500-SNP windows separately. This can result in a loss of phasing accuracy at the 
beginning and end of each window because information outside the window is ignored, 
and therefore there is less information about the genotypes at the two extremities of the 
window. To address this problem, we learn haplotype-cluster models in overlapping 
windows; specifically, we use 500-SNP windows in which two adjacent windows on the 
same chromosome overlap by 100 SNPs. Since the final phasing estimates produced in 
the two windows may disagree in the overlapping portion, it is not immediately clear 
how to combine the phasing estimates from adjacent windows. We propose a simple 
solution to this problem. First, we select the SNP nearest the midpoint of the 
overlapping portion at which the genotype is heterozygous (that is, the two allele copies 
are not the same). We call this the “switch-point SNP.” We then join the sequences from 
the overlapping windows that share the same allele at this switch-point SNP. For 
example, in Figure B2 we join the top sequence in the left-hand window with the bottom 
sequence in the right-hand window because they are both estimated to carry the blue 
allele at the selected switch-point SNP. 
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Figure B2: Underdog learns haplotype-cluster models in overlapping windows. This figure 
illustrates how we obtain the final genotype phase from these overlapping windows.  
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Appendix C. The Timber IBD adjustment 
algorithm 
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